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How It started ..

Neural computation: neurons can implement
logical operations and networks of such neurons

are capable of universal computation (McCulloch

and Pitts 1943).

Hebbian learning: Randomly wired
networks can learn through input driven
reinforcement of synaptic connections

(Hebb1949)



How it's going...
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You can't brute force
intelligence



What is Intelligence ?

« Skill is how is the ability to perform a given task (e.g. playing chess)

« Intelligence is the ability to acquire-new skills and generalize to new problems
(Chollet 2019)

» The Abstraction and Reasoning Corpus (ARC) is a set of tests aiming to

benchmark intelligence (ARC leaderboard)


https://arcprize.org/leaderboard

Example of an ARC task

ARC-ACI-2 Public Eval Task #e3721c99



Comparing Brains and Neural
Networks




Relating Model Activation to Brain Recordings

» Show the same stimuli (e.g images) to Humans and Models
e Find mapping W between brain activity Y and model activation X

» Correlate the prediction from model activation to the actual brain recording: R
= corr(WXest, ]/test)
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Raugel et al. (2025): Disentangling factors of convergence between brains and computer vision models



Corresponding Representational Hierarchies

 Early and late layers align with the earliest and latest brain responses
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http://localhost:3730/talks/2025-11-04-neuroai/img/temporal.png
http://localhost:3730/talks/2025-11-04-neuroai/img/temporal.png

Different Architecture, Convergent Solutions

» Better ImageNets are more predictive
of brain activity
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Schrimpf et al. (2018): Brain-score: Which artificial neural network for object

recognition is most brain-like?
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» Notevery model maps onto the
neural hierarchy

BH score Brair(\d'fg(-?E)irain
0.43
0.42
0.42
0.42
0.41
0.4
0.38
0.38
0.38
0.37
0.34
[]
0.28
FE 2] r=-073
0.2 & VGG-S
0.2 0.4 AIexNet./.. LA
0.2 ResNet-182°0®
0.26 Q
0.24 g 0.3 .SqueezeNet-L&
0.22 Q °
] o DenseNet-169
0.21 T | CORnet-Z oo
0.21 m 02 <
NASNet-Mobile ¢ o
0.21 [}
0.19 0411
] Inception-vé4
0.16
0.14 0.0 T T T T 1
0.14 50 60 70 80 90

0.10

ImageNet top-1 accuracy (%)

Nonaka et al. (2021): Brain hierarchy score: Which deep neural networks are

hierarchically brain-like?
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Comparing Humand and Model Behavior

Which is the odd one out? Representational
embedding Predicted choice behavior
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Hebart et al. (2020): Revealing the multidimensional mental representations of natural objects underlying human similarity judgements
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Different Dimensions of Interest
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Mahner et al. (2025): Dimensions underlying the representational alignment of deep neural networks with humans



-undamental Differences
between Artifical anc
3iological Intelligence




Emodied Cognition

Al is purely computational/statistical
inference but human cognition is P
physically embodied

Human cognition can extend beyond
the brain into the body and
environment

Gigerenzer (2021): Embodied Heuristics

Example: the gaze heuristic

Because human cognition is embodied, complicated inference problems can be
solved by simple heuristics
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Are Al "Agents’ Real Agents?

Biological Agents

Are autopoietic (i.e. self-
manufacturing)

Are internally motivated to self-
preserve and act autonomously

Live in a large world of ill-defined
problems and have to decide what s
relevant

Artificial Agents

Are programmed by an external
agent

Are externally motivated and
triggered by an external agent

Live in a small world of well-defined
problems and operate within
predefined formalized ontology

See Jaegeretal. (2024): Naturalizing relevance realization: why agency and cognition

are fundamentally not computational
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